© STD - 0431 - 2670142 FAX - 0431 - 2670143

DHANALAKSHMI SRINIVASAN INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University) NH - 45, Trichy - Chennai Trunk Road, SAMAYAPURAM,TRICHY - 621 112.

E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

Subject code: CS8691

Branch/Year/Sem: CSE/III/VI

Subject Name: ARTIFICIAL INTELLIGENCE Batch:2017-2021

Staff Name: R.PADMAVATHI

Academic year:2019-2020(EVEN)

	UNIT I INTRODUCTION
S.NO	PART-A
1	What is AI? Artificial Intelligence is the branch of computer science concerned with making computers behave like humans. "the study and design of intelligent agents," where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.
2	List out the applications of AI. Autonomous planning, Control and scheduling. Game Playing and Robotics.
3	Define an agent. An agent is anything that can be viewed as perceiving its environment through sensors and SENSOR acting upon that environment through actuators.
4	List the various type of agent program. Simple reflex agent program. Agent that keep track of the world. Goal based agent program. Utility based agent program.
5	Define Agent function Mathematically speaking, we say that an agent's behavior is described by the agent function that maps any given percept sequence to an action. $f: \mathcal{P}^* \to \mathcal{A}$
6	 What is rational agent? A rational agent is one that does the right thing-conceptually speaking; every entry in the table for the agent function is filled out correctly. Obviously, doing the right thing is better than doing the wrong thing. The right action is the one that will cause the agent to be most successful.
7	List out the properties of task environments.

	1				
		• •	partially observable		
	• Deterministic vs. stochastic				
	• Episodic vs. sequential				
	• Static vs. dynamic				
	• Dis	screte vs. continuo	us		
	• Sir	gle agent vs. mult	iagent		
8		ingle agent Vs mul			
	Single agent vs. multiagent.				
	• An agent solving a crossword puzzle by itself is clearly in a single-agent environment,				ent environment,
			aying chess is in a two-a	• • •	
			classified in to two way	-	
		mpetitive multiage			
		operative multiage			
9		nple reflex agents			
-			ed on condition-action r	ules, implemented with a	n appropriate
				do not have memory of p	
10		happing actions to			
			percept to action and u	pdates internal state.	
			ediately to percepts.		
	• simple re				
		sed reflex agents			
	- Goal-base	ed agents act in ord	ler to achieve their goal	(s).	
	- Utility-based agents maximize their own utility function				
11	Define Omniscience agent.				
	An omniscient agent knows the actual outcome of its actions and can act accordingly; but				
	omniscience is impossible in reality. Doing actions in order to modify future percepts-sometimes				
	called information gathering-is an important part of rationality.				
12	Give an example for Performance measures in agents				
	Agant	Performance	Environments	Astructore	Sensors
	Agent	Measure	Environments	Actuators	Sensors
	Type Taxi	Safe: fast,	Roads, other	Steering, accelerator,	Cameras,sonar,
	driver	legal,	traffic,pedestrians,	brake,	Speedometer,GPS,
	unver	comfortable	customers	Signal, horn, display	Odometer,engine
		trip, maximize	customers	Signai, norm, display	sensors,keyboards,
		profits			accelerator.
		*			accelerator.
13	Compare Deterministic vs. stochastic.				
	Deterministic vs. stochastic.				
	□ If the next state of the environment is completely determined by the current state and the action				
	executed by the agent, then we say the environment is deterministic;				
1.4		□ Otherwise, it is stochastic.			
14	How to rep	resent model reflex	x agent.		

	State How the world evolves What my actions do Condition-action rules Agent Agent Sensors What the world is like now What the world is like now What action I should do now Actuators
15	Classify the components used in learning elements. A learning agent can be divided into four conceptual components, as,
	• Learning element
	Performance element
	• Critic
	Problem generator
	PART-B
1	Explain properties of environments.
2	Explain in detail the structure of different intelligent agents.
3	Define agents. Specify the PEAS measures with an example.
4	Explain the components of problem definition with an example.

	UNIT II PROBLEM SOLVING METHODS		
S.NO	PART-A		
1	Define Uninformed Search Strategies		
1	Uninformed Search Strategies have no additional information about states beyond that provided in the problem definition.		
	\checkmark Strategies that know whether one non goal state is "more promising" than		
	another are called Informed search or heuristic search strategies.		
2	Categorize the uninformed search strategies		
	There are five uninformed search strategies as given below.		
	• Breadth-first search		
	• Uniform-cost search		
	• Depth-first search		
	• Depth-limited search		
	• Iterative deepening search		
	Bidirectional Search		
3	Compare blind search& heuristic search		
	Blind search has no information about the no. of steps or the path cost from the current state to the		
	goal, they can distinguish a goal state from nongoal state. Heuristic search knowledge given. Problem		
	specification solution is best.		

4	Compare BFS and DFS			
	BFS	DFS		
	BFS means breath wise search	DFS means depth wise search		
	Space complexity is more	Space complexity is less		
	Do not give optimal solution	Gives optimal solution		
	Queuing fn is same as that of queue	Queuing fn is some what different from		
	operator	queue operator		
5	List the time&space complexity associated wit	h depth limited search.		
	[CO2,L1,Apr/May-14]			
	Time complexity =O (bd) , b-branching factor,	d-depth of tree		
-	Space complexity=o (bl)			
6	Whether uniform cost search is optimal? [CO2			
	Uniform cost search is optimal & it chooses th	e best solution depending on the path		
7	COSt.			
7	Describe CSP[CO2-L1-Apr/May-14]	nd of problem satisfies some additional structural		
		em in general. In a CSP; the states are Described by		
	the values of a set of variables and the goal test spe	e .		
8	Define heuristic function	contes a set of constraint that the value must obey.		
0		function that ranks alternatives in various search		
		available information in order to make a decision		
	which branch is to be followed during a search.			
9	Define backtracking search			
	The term backtracking search is used for depth-fi	irst search that chooses values for one variable at a		
	time and backtracks when a variable has no legal v	values left to assign.		
10	What is Constraint propagation			
		ropagating the implications of a constraint on one		
	variable onto other variables.			
11	Describe iterative deepening search.			
	Iterative deepening is a strategy that sidesteps the	e i		
10	by trying all possible depth limits: first depth 0, then depth 1,then depth 2& so on. What is called as bidirectional search?			
12		neously search both forward from the initial state &		
	backward from the goal & stop when the two search			
13	Explain depth limited search.			
15	Depth limited avoids the pitfalls of DFS by imposing a cut off of the maximum depth of a p			
		ed search algorithm or by using the general search		
	algorithm with operators that keep track of the dep			
14	Carryout the criteria for the evaluation of sear			
	There are 4 criteria:			
	Completeness			
	time complexity			
	space complexity			
	optimality.			
15	List the various informed search strategy.			
	• Best first search – greedy search			
	• A* search			
	Memory bounded search-Iterative deepeni	ng A*search		

	simplified memory bounded	
	• A*search Iterative improvement search –hill climbing	
	• simulated annealing.	
	PART-B	
1	Explain BFS and DFS in detail.	
2	Summarize the back tracking search for CSPs	
3	Discuss in detail about the crypt arithmetic problems in CSPs.	
4	Explain hill climbing in detail.	
5	Discuss in detail about A* and AO*algorithm,	
6	Discuss in detail about alpha-beta pruning process.	

	UNIT III KNOWLEDGE REPRESENTATION
	PART-A
1	Describe a Sentence.
	Each individual representation of facts is called a sentence. The sentences are
	expressed in a language called as knowledge representation language.
2	Define First Order Logic.
	• First-order logic (FOL) models the world in terms of
	– Objects, which are things with individual identities
	- Properties of objects that distinguish them from other objects
	- Relations that hold among sets of objects
_	- Functions, which are a subset of relations where there is only one "value" for any given "input"
3	What are the types of Quantifiers?
	Universal Quantifiers & Existential Quantifiers
4	What is Universal Quantification?
	Universal quantification
	a. x)P(x) means that P holds for all values of x in the domain associated with that variable \forall (
_	b. mammal(x) \rightarrow x) dolphin(x) \forall E.g.,
5	Proposition symbols can be connected with Boolean connectives, to give more complex meaning.
	Connectives,
	o A Logical Conjunction
	o V Logical disjunction
	o ¬ Negation
	o ⇔ Material Equivalence or Biconditional
-	$o \Rightarrow$ Material Implication or conditional
6	• Facts- truths in some relevant world. These are the things we want to represent.
_	Representation- These are the things we will actually be able to manipulate.
7	Define unification.
	When attempting to match 2 literals, all substitutions must be made to the antira literal. There may be
	When attempting to match 2 literals, all substitutions must be made to the entire literal. There may be
	many substitutions that unify 2 literals, the most general unifier is always desired
8	Define Semantic Networks
	In semantic net, information is represented as a set of nodes connected to each other by a set of
	labelled arcs, which represent relationship among the nodes. In this network, inheritance is used to
	derive the additional relation.

9 Def	ine Forward Chaining.	
-	e Generalized Modus Ponens rule can be used by Forward Chaining.	
	From the sentences in the KB which in turn derive new conclusions.	
	Forward chaining is preferred when new fact is added to the database and we want to generate its	
	sequences.	
10 Wh	at is Backward chaining?	
Bac	kward chaining is designed to find all answers to a question asked to the knowledge base.	
The	erefore it requires a ASK procedure to derive the answer.	
11 Wh	at is prolog program?	
A p	rolog program is described as a series of logical assertions each of which is a Horn Clause.	
$\Box A$	A Horn Clause is a Clause that has atmost one positive literal,	
	$mple: - P, \neg P \Box Q$	
	at is Resolution?	
	olution is a complete inference procedure for first order logic	
	Any sentence a entailed by KB can be derived with resolution	
	Catch: proof procedure can run for an unspecified amount of time	
13 Hov	w to represent categories of obtects?	
	• Predicates	
	Objects	
14 Def	ine intrinsic and extrinsic property	
	• The property which describes a particle of an object.	
	The property which describes a whole particle of an object.	
15 Hov	w to represent mental events and objects	
	• Theory of beliefs	
	Modal logic	
	Syntactic theory	
	ine monotonic reasoning	
	notonic reasoning attempts to formalie reasoning with incomplete information.	
) human reasoning is non-monotonic reasoning	
Mat	thematic reasoning is monotonic reasoning	
	PART-B	
	cuss in detail about First order logic with an example.	
	Explain unification algorithm in detail.	
3 Exp	plain in detail about forward and backward chaining in detail.	
1		
4 Def	ine resolution. Explain resolution with an example.	
4Def5Def	ine resolution. Explain resolution with an example. ine events. Explain the necessity for mental events and objects in reasoning. strate the knowledge representation in detail.	